Table III. Enthalpy of Solution of $\mathrm{H}_{2} \mathrm{O}$ in 9.93 m HCl at $40^{\circ} \mathrm{C}$

Sample wt,g	Cor temp rise, ${ }^{\circ} \mathrm{C}$	-Enthalpy of soln, cal/sample	$-\Delta H_{4},{ }^{a}$ $\mathrm{cal} / \mathrm{mol}$
10.02005	0.3551	254.4	457
11.01088	0.3873	277.8	455
12.05448	0.4242	305.7	456
13.02193	0.4572	329.0	455
15.02865	0.5268	380.1	456
$a_{\Delta H_{4}}=-458+0.20 w, w=13.14493, s t d \operatorname{dev}=1, \Delta H_{4}=$			
$\mathbf{4 5 5 .}$			

Table IV. Enthalpy of Solution of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ in $9.93 \mathrm{~m} \mathrm{HCl}+$ Stoichiometric $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$

Sample wt, g	Cor temp rise, ${ }^{\circ} \mathrm{C}$	Enthalpy of soln, cal/sample	$\Delta H_{5}{ }^{a}$ cal $/ \mathrm{mol}$
12.91502	-0.8600	624.8	5565
13.31058	-0.8879	646.3	5585
13.69595	-0.9125	663.5	5572
14.11904	-0.9392	684,3	5575
14.51473	-0.9650	703.6	5576
$a \Delta H_{5}=5534+2.95 w, w=13.31608$, std dev $=7, \Delta H_{5}=$			
5573.			

equations of the enthalpies of solution as a function of sample weight, w, were fitted to the observed values by the "leastsquares" method. These equations were solved where w was the average weight of $\left(\mathrm{NH}_{4}\right)_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$ or the stoichiometric amount of $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 16.26 \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$, or $\mathrm{H}_{2} \mathrm{O}$ corresponding to that weight. The equations along with the standard deviations and the values of $\Delta H_{2}, \Delta H_{3}, \Delta H_{4}$, and ΔH_{5} for the specified values of w also are listed in Tables I-IV. Substitution of these calculated values of the enthalpies of solution in eq 6 gives $-31592 \pm 66 \mathrm{cal}$ (standard deviation) for the enthalpy of reaction 1 at $40^{\circ} \mathrm{C}$. This value was adjusted by 242 cal to give -31350 $\pm 66 \mathrm{cal}$ for the enthalpy of reaction 1 at $25^{\circ} \mathrm{C}$ according to the equation
$\Delta H_{1}\left(25^{\circ} \mathrm{C}\right)=\Delta H_{1}\left(40{ }^{\circ} \mathrm{C}\right)+\int_{40}^{25^{\circ} \mathrm{C}}{ }^{\circ} \mathrm{C} \Delta C_{P} \mathrm{~d} T$
through use of polynomial equations for determining differences
between the heat capacities of the products and the reactants. The heat capacity equations were derived from the data of Osborne et al. for water (8), of Stephenson and Zettlemoyer for $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}(9)$, of Egan et al. for phosphoric acid solutions (2), and of Luff and Williard for $\left(\mathrm{NH}_{4}\right)_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}(6)$.

The data of Egan and Luff (1) were used to determine ΔH_{8} and ΔH_{9}, the enthalpies of reactions 8 and 9 at $25^{\circ} \mathrm{C}$, as -436
$\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 16.26 \mathrm{H}_{2} \mathrm{O}+84.24 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 100.5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 100 \mathrm{H}_{2} \mathrm{O}+0.5 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 100.5 \mathrm{H}_{2} \mathrm{O}$
and -1 cal, respectively. Subtracting twice the difference between ΔH_{8} and ΔH_{9} from ΔH_{1} at $25^{\circ} \mathrm{C}$ gives ΔH_{10}, the enthalpy of reaction 10 at $25^{\circ} \mathrm{C}$, as -30480 cal .

$$
\begin{align*}
& \left(\mathrm{NH}_{4}\right)_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}+2\left(\mathrm{H}_{3} \mathrm{PO}_{4} \text { in } 100 \mathrm{H}_{2} \mathrm{O}\right)+\mathrm{H}_{2} \mathrm{O}= \\
& \quad 5 \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4} \tag{10}
\end{align*}
$$

The standard enthalpies of formation of $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{c}), \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, and $\mathrm{H}_{3} \mathrm{PO}_{4}$ in $100 \mathrm{H}_{2} \mathrm{O}$ are $-345.38,-68.315$, and -308.176 $\mathrm{kcal} / \mathrm{mol}$, respectively (7). Substituting these enthalpies of formation and the enthalpy of reaction 10 in the equation

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\circ}\left(\left(\mathrm{NH}_{4}\right)_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}\right)=5\left(\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}\right)\right)- \\
& \quad 2\left(\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{3} \mathrm{PO}_{4} \text { in } 100 \mathrm{H}_{2} \mathrm{O}\right)\right)-\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta H_{10}
\end{aligned}
$$

gives $-1011.8 \mathrm{kcal} / \mathrm{mol}$ as the standard enthalpy of formation of $\left(\mathrm{NH}_{4}\right)_{5} \mathrm{P}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$.

Literature Cited

(1) Egan, E. P., Jr., Luff, B. B., J. Phys Chem., 65, 523 (1961).
(2) Egan, E. P., Jr., Luff, B. B., Wakefield, Z. T., J. Phys. Chem., 62, 1091 (1958).
(3) Luff, B. B., Reed, R. B., Wakefield, Z. T., J. Chem. Eng. Data, 16, 342 (1971).
(4) Luff, B. B., Reed, R. B., Wakefield, Z. T., J. Chem. Eng. Data, 17, 96 (1972).
(5) Luff, B. B., Reed, R. B., Wakefield, Z. T., J. Chem. Eng. Data, 17, 423 (1972).
(6) Luff, B. B., Williard, J. W., J. Chem. Eng. Data, 21, 420 (1976).
(7) Natl. Bur. Stand. (U.S.), Tech. Note, No. 270-3 (1968).
(8) Osborne, N. S., Stimson, H. F., Ginnings, D. C., J. Res. Natl. Bur. Stand., 23, 238 (1939).
(9) Stephenson, C. C., Zettlemoyer, A. C., J. Am. Chem. Soc., 66, 1405 (1944).

Received for review November 21, 1977. Accepted March 17, 1978.

Pressure-Volume-Temperature Relationships of Several Polar Liquids

Akibumi Kumagai* and Hiroji Iwasaki
Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Katahira, 2-1-1, Sendai, Japan 980

Abstract

The specific volumes of liquid $\mathrm{CCl}_{2} \mathrm{~F}_{2}, \mathrm{CHClF}_{2}, \mathrm{CH}_{3} \mathrm{Cl}$, $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, and $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ have been measured at several temperatures from -20 to $+40^{\circ} \mathrm{C}$ and at pressures from the saturated vapor pressures to near 1600 atm with an accuracy better than 0.13%. The data were fitted to the Tait equation of state at each temperature with a maximum deviation of 0.2%.

An accurate knowledge of the specific volumes of polar liquids under high pressures is important in the interpretation of the polarity effect on the compressibility in connection with the elucidation of the internal structure problems of polar liquids.

Most studies of $P-V-T$ relationships have been made on nonpolar liquids, and very few measurements are available on polar liquids. The purpose of the present work is, therefore, to obtain the specific volumes of polar liquids. The measurements were made at temperatures from -20 to $+40^{\circ} \mathrm{C}$, and at pressures up to near 1600 atm .

ExperImental Section

Materials. The origin and purity of samples are recorded as follows: $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ and CHClF_{2}, Daikin Kogyo Co., Ltd., Japan, $99.9 \% ; \mathrm{CH}_{3} \mathrm{Cl}$, Matheson Gas Products, a Division of Will Ross, Inc., 99.5%; $\mathrm{CH}_{3} \mathrm{I}$, Kokusan Kagaku Co., Ltd., Japan, 98.2%;

Table I. Experimental Specific Volumes

Compound	Pressure, atm	Specific volume, $\mathrm{cm}^{3} / \mathrm{g}$				Ref of vol data
		$-20.00^{\circ} \mathrm{C}$	$0.00{ }^{\circ} \mathrm{C}$	$20.00{ }^{\circ} \mathrm{C}$	$40.00{ }^{\circ} \mathrm{C}$	
$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	$\left(P_{0}\right)$	$0.68546(1.5)^{a}$	0.71592 (3.0) ${ }^{\text {a }}$	$0.75244(5.6)^{a}$	$0.79802(9.5)^{a}$	3
	95.3			0.72837	0.76182	
	283.1	0.65273	0.67172	0.69467	0.71819	
	469.5	0.63915	0.65494	0.67312	0.69297	
	654.9	0.62581	0.64073	0.65661	0.67410	
	841.4	0.61640	0.62908	0.64310	0.65806	
	1027.9	0.60775	0.61966	0.63267	0.64540	
	1214.1	0.60008	0.61026	0.62260	0.63466	
	1400.5	0.59290	0.60350	0.61427	0.62608	
	1587.2	0.58681	0.59787	0.60783	0.61787	
CHClF_{2}	$\left(P_{0}\right)$	$0.74274(2.4)^{a}$	$0.78035(4.9)^{a}$	$0.82646(8.0)^{a}$	$0.88606(15.1)^{a}$	8
	95.4			0.80036	0.84702	
	283.1	0.70979	0.73519	0.76202	0.79450	
	468.6	0.69373	0.71286	0.73669	0.76325	
	651.2	0.67916	0.69809	0.71683	0.74039	
	836.9	0.66900	0.68679	0.70269	0.72234	
	1022.4	0.65875	0.67596	0.69051	0.70668	
	1206.5	0.65213	0.66438	0.67953	0.69500	
	1390.7	0.64333	0.65613	0.66955	0.68424	
	1574.7	0.63638	0.64907	0.65998	0.67390	
$\mathrm{CH}_{3} \mathrm{Cl}$	(P_{0})	$0.9972(1.2)^{a}$	$1.0343(2.5)^{a}$	$1.0775(4.8)^{a}$	$1.1262(8.3)^{a}$	
	283.1	0.96655	0.99596	1.0296	1.0644	
	468.6	0.95016	0.97624	1.0043	1.0352	
	651.2	0.93660	0.95974	0.98501	1.0119	
	836.9	0.92442	0.94516	0.96827	0.99289	
	1022.4	0.91316	0.93297	0.95421	0.97660	
	1206.5	0.90479	0.92212	0.94226	0.96266	
	1390.7	0.89428	0.91206	0.93125	0.95014	
	1574.2	0.88642	0.90301	0.92064	0.93962	
$\mathrm{CH}_{3} \mathrm{I}$	(P_{0})	$0.41773(0.1)^{a}$	$0.42792(0.2)^{a}$	$0.43844(0.4)^{a}$	$0.44990(0.9)^{a}$	
	283.1	0.40955	0.41831	0.42760	0.43664	
	468.6	0.40526	0.41330	0.42136	0.42996	
	651.2	0.40136	0.40884	0.41619	0.42425	
	836.9	0.39778	0.40450	0.41192	0.41897	
	1022.4	0.39433	0.40091	0.40772	0.41417	
	1206.5	0.39127	0.39759	0.40377	0.41007	
	1390.7	0.38833	0.39422	0.40044	0.40640	
	1574.2	0.38569	0.39128	0.39724	0.40286	
$\mathrm{CH}_{3} \mathrm{Br}$	$\left(P_{0}\right)$	$0.56060(0.4)^{a}$	0.57747 (0.9) ${ }^{a}$	$0.59592(1.8)^{a}$	$0.61628(3.3)^{a}$	
	283.1	0.54766	0.56073	0.57540	0.59070	
	468.6	0.54028	0.55270	0.56561	0.57949	
	651.2	0.53407	0.54553	0.55763	0.57035	
	836.9	0.52848	0.53889	0.55001	0.56148	
	1022.4	0.52325	0.53301	0.54366	0.55401	
	1206.5	0.51900	0.52771	0.53777	0.54734	
	1390.7	0.51451	0.52274	0.53216	0.54133	
	1574.2	0.51057	0.51828	0.52649	0.53536	
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	(P_{0})	$0.64845(0.1)^{a}$	$0.66643(0.2)^{a}$	$0.68523(0.5)^{a}$	$0.70541(1.1)^{a}$	
	194	0.63814	0.65373	0.66971	0.68595	
	388	0.62967	0.64382	0.65738	0.67295	
	581	0.62234	0.63479	0.64726	0.66183	
	774	0.61588	0.62713	0.63850	0.65128	
	968	0.60925	0.62010	0.63046	0.64249	
	1161	0.60419	0.61379	0.62353	0.63447	
	1354	0.59874	0.60829	0.61680	0.62749	
	1547	0.59442	0.60300	0.61134	0.62169	
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$	$\left(P_{0}\right)$	$1.0175(0.0)^{4}{ }^{\text {a }}$	$1.0430(0.1)^{a}$	$1.0727(0.2)^{a}$	$1.1056(0.5)^{a}$	
	194	1.0028	1.0259	1.0521	1.0795	
	388	0.9901	1.0115	1.0350	1.0600	
	581	0.9785	0.9985	1.0204	1.0432	
	774	0.9685	0.9880	1.0081	1.0282	
	968	0.9597	0.9791	0.9971	1.0151	
	1161	0.9520	0.9696	0.9870	1.0046	
	1354	0.9446	0.9612	0.9781	0.9949	
	1547	0.9377	0.9544	0.9703	0.9861	

${ }^{a}$ Saturated vapor pressure.
$\mathrm{CH}_{3} \mathrm{Br}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, Tokyo Kasei Kogyo Co., Ltd., Japan, 99.8 and 99%, respectively; $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$, Nakaral Chemicals, Ltd., Japan, 97.0%. These samples were subjected to further purification by distillation before use, and the reagent grade mercury was purified by a modified automatic mercury washer (1).

Apparatus and Method. The method used in this study was similar to one presented earlier (10), but the volume changes of liquids at high pressures were measured by a modified glass piezometer as shown in Figure 1. The glass piezometer used previously had the fault that air may be introduced into the piezometer during the removal of it from a vacuum line. The

Figure 1. Glass piezometers: A , joint in vacuum line; B , screw; C , spring; D, O-ring; E, float; F, glass indicator; G, pressure vessel; H, mercury.
joint of this piezometer was modified for sampling in vacuo. I in Figure 1 indicates the piezometer under its connection with the vacuum line. As the piezometer filled with the liquid is removed from the line, the float (E) and the screw (B) are raised by the action of spring (C), and at last the float is tightly contacted with the O-ring (D) as shown in Figure 1, II. The specific volumes of liquids at high pressures are determined in a similar manner reported earlier after removing the screw and the spring from the float (see III in Figure 1). The saturated liquid volumes except for $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ and CHClF_{2} were determined directly using the same piezometer placed in the thermostat by the usual method.

The volume data for $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and up to 1000 atm show agreement with the data of the literature (9) within the limits of accuracy of measurement (0.06%).

Result and Discussion

The specific volumes at four temperatures, $-20,0,20$, and $40^{\circ} \mathrm{C}$, were determined from the saturated vapor pressures to near 1600 atm . The specific volumes for seven liquids are presented in Table I. The maximum deviation from the smooth curves is 0.13% over the whole range of measurements. There are sources of $P-V-T$ data for CHClF_{2} (13), $\mathrm{CH}_{3} \mathrm{Cl}(7), \mathrm{CH}_{3} \mathrm{I}$ (5), and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}(2,4,12)$, but the direct comparison of the present results with those is impossible because temperatures and pressures differ.

Many $P-V-T$ data for liquids have been represented by the Tait equation (6), which may be written in the form
$V_{P}=V_{0}\left(1-C \ln \left[(B+P) /\left(B+P_{0}\right)\right]\right)$
The Tait parameters B and C were computed for each isotherm by a least-squares method fit to the $P-V-T$ data and listed in

Table II. Tait Parameters, B and C

Compound	T, ${ }^{\circ} \mathrm{C}$	B, atm	C	Avdev, ${ }^{a}$ $\%$	Max dev, \%
$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	-20.00	394	0.0888	0.07	0.19
	0.00	285		0.07	0.17
	20.00	197		0.04	0.10
	40.00	125		0.08	-0.20
CHClF_{2}	-20.00	460	0.0963	0.10	0.17
	0.00	325		0.12	-0.21
	20.00	214		0.08	-0.19
	40.00	126		0.06	0.13
$\mathrm{CH}_{3} \mathrm{Cl}$	-20.00	791	0.1014	0.03	-0.13
	0.00	626		0.02	0.05
	20.00	485		0.05	-0.12
	40.00	368		0.04	-0.09
$\mathrm{CH}_{3} \mathrm{I}$	-20.00	1275	0.0953	0.02	0.05
	0.00	1085		0.03	-0.05
	20.00	936		0.03	± 0.05
	40.00	786		0.02	-0.04
$\mathrm{CH}_{3} \mathrm{Br}$	-20.00	1020	0.0956	0.02	0.04
	0.00	822		0.03	-0.08
	20.00	670		0.05	-0.13
	40.00	536		0.07	-0.16
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	-20.00	1085	0.0942	0.03	0.05
	0.00	887		0.01	-0.05
	20.00	722		0.02	-0.05
	40.00	610		0.06	-0.18
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$	-20.00	1063	0.0874	0.02	-0.04
	0.00	938		0.03	0.07
	20.00	779		0.02	± 0.02
	40.00	631		0.03	± 0.07

${ }^{a}$ Average deviation $=\Sigma_{n=1}{ }^{n}\left(\left|\left(V_{\text {calcd }}-V_{\operatorname{expt1}}\right) / V_{\operatorname{exptl}}\right| X\right.$ I00) $/ n . \quad n=$ number of data. $\quad V_{\text {calcd }}, V_{\text {exptl }}=$ specific volumes calculated by the Tait equation with parameters B and C in Table II and experimental values, respectively.

Table II. The specific volume at the saturated vapor pressure, P_{0}, was chosen as V_{0} in this evaluation. It has previously been reported (11) that the C value for NH_{3} became constant in the lower temperatures and decreased in the neighborhood of the critical temperature. The C values for other liquids, as well as NH_{3}, were regarded as constant at experimental temperatures far from the critical temperature. Also, the average and the maximum deviation of the calculated values by the equation against the experimental data are indicated in Table II.

Glossary

B, C	Tait equation parameters
P	pressure, atm
P_{0}	saturated vapor pressure, atm V_{0}, V_{P}
specific volumes at pressures, P_{0} and P atm, re- spectively, $\mathrm{cm}^{3} / \mathrm{g}$	

Literature Cited

(1) Aizawa, M., Kumagai, A., Matsumura, Z., Takahashi, M., Saijo, H., Kagaku Kogyo, 29, 111 (1976).
(2) Amagat, E. H., Ann. Chim. Phys., 29, 505 (1893).
(3) ASHRAE, "Thermodynamic Properties of Refrigerants", 1969.
(4) Bridgman, P. W., Proc. Am. Acad. Arts Sci., 49, 1 (1913).
(5) Campbell, J. H., Fisher, J. F., Jonas, J., J. Chem. Phys., 61, 346 (1974).
(6) Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., "Molecular Theory of Gases and Liquids", Wiley, New York, N.Y., 1954.
(7) Hsu, C. C., McKetta, J. J., J. Chem. Eng. Data, 9, 45 (1964).
(8) Japanese Society of Refrigerating Engineers, "Thermodynamic Properties of Refrigerants, R-22", 1975.
(9) Kell, G. S., Whalley, E., Phil. Trans. R. Soc. London, Ser. A, 258, 565 (1965).
(10) Kumagai, A., Toriumi, T., J. Chem. Eng. Data, 16, 293 (1971).
(11) Kumagai, A., Date, K., Iwasaki, H., J. Chem. Eng. Data, 21, 226 (1976).
(12) Millet, M., Jenner, G., High Temp.-High Pressures, 1, 697 (1969).
(13) Zander, M., Proceedings of the 4th Symposium on Thermophysical Properties, ASME, 1968, p 114.

